
Chapter 4: Classification

 Response variable is qualitative
1. Logistic regression
2. Linear discriminant analysis
3. K-nearest neighbors
4. Poisson regression



Overview
 Use phenotypic of genetic data to classify species or 

populations
 Can default be predicted from credit card balance

and income?



Logistic Regression

 When there are two outcomes, like alive (0) or dead (1), we can 
predict the probability of either outcome as , p(X)=Pr(Y=1|X).

The blue line on the left is a straight line and on the right a logistic equation



Logistic Regression

 𝑝𝑝 𝑋𝑋 = 𝑒𝑒𝛽𝛽0 +𝛽𝛽1 𝑋𝑋

1+𝑒𝑒𝛽𝛽0 +𝛽𝛽1 𝑋𝑋
and 1 − 𝑝𝑝 𝑋𝑋 = 1

1+𝑒𝑒𝛽𝛽0 +𝛽𝛽1 𝑋𝑋

 The odds, 𝑝𝑝(𝑋𝑋)
1−𝑝𝑝(𝑋𝑋)

= 𝑒𝑒𝛽𝛽0+𝛽𝛽1𝑋𝑋

 Log-odds, or logit, 𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝(𝑋𝑋)
1−𝑝𝑝(𝑋𝑋)

= 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋

 This model can be expanded to include multiple predictors
logit=𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1 + ⋯+ 𝛽𝛽𝑝𝑝𝑋𝑋𝑝𝑝



Logistic Regression (cont.)

 These coefficients will be estimated by maximum likelihood
 Likelihood function =𝑙𝑙 𝛽𝛽0,𝛽𝛽1 = ∏𝑖𝑖:𝑦𝑦𝑖𝑖=1 𝑝𝑝(𝑥𝑥𝑖𝑖)∏𝑖𝑖:𝑦𝑦𝑖𝑖=0 1 − 𝑝𝑝(𝑥𝑥𝑖𝑖) ,which is 

the probability of observing the sample. β’s are chosen to maximize 
the likelihood function. This can be done taking derivatives as with 
the least squares estimates or if there are constraints on the 
parameter values a technique like Lagrange multipliers can be 
used. 



Logistic Regression: Example

Drosophila larvae are allowed to feed on
excess yeast past for various periods. 

At each sample time larvae are removed and placed
in vials with agar only (no food). 

The number of adult survivors at each time sample
are recorded.



Logistic Regression: Example
selection replicate age alive dead
utb 1 12 0 30
utb 1 24 0 30
utb 1 30 0 30
utb 1 36 0 30
utb 1 42 2 28
utb 1 48 2 28
utb 1 54 9 21
utb 1 60 25 5
utb 1 66 25 5
utb 1 72 24 6
etc
There is a second selection treatment “tb” a control for
“utb” -> larvae raised in urea food.

This data file (survival.data) is read into R,
viability.data<- read.table("survival.data ",header=TRUE)



Logistic Regression: Example

A linear model will not do well with these data so a quadratic model is used
#So let’s also try the analysis on hours 42 and above
viability.data2<- viability.data[viability.data$age>36,]

viability.data3<- cbind(viability.data2,viability.data2$age^2)

dead.data2<- as.matrix(viability.data2[,4:5])

names(viability.data3)<- c("selection", "replicate", "age", "alive", "dead","age2")

viability.glm3<- glm(dead.data2~ age*selection+age2*selection,data=viability.data3,
family=binomial)



Logistic Regression: Example
> summary(viability.glm3)
Call:
glm(formula = dead.data2 ~ age * selection + age2 * selection, 

family = binomial, data = viability.data3)

Deviance Residuals: 
Min       1Q   Median       3Q      Max  

-3.3493  -1.5558  -0.1557   1.7634   4.3268  

Coefficients:
Estimate Std. Error z value Pr(>|z|)    

(Intercept)β0 -1.919e+01  1.505e+00 -12.754  < 2e-16 ***
age β1 5.673e-01  4.663e-02  12.166  < 2e-16 ***
selectionutb α0 3.969e+00  2.160e+00   1.838  0.06613 .  
age2 β2 -3.800e-03  3.452e-04 -11.009  < 2e-16 ***
age:selectionutb α1 -1.514e-01  6.695e-02  -2.261  0.02373 *  
selectionutb:age2 α2 1.284e-03  4.983e-04   2.577  0.00997 ** 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1234.99  on 89  degrees of freedom
Residual deviance:  365.04  on 84  degrees of freedom
AIC: 635.29

Number of Fisher Scoring iterations: 5

𝑙𝑙𝑙𝑙𝑙𝑙
𝑝𝑝𝑖𝑖(𝑡𝑡)

1 − 𝑝𝑝𝑖𝑖(𝑡𝑡)
= 𝛽𝛽0 + 𝛿𝛿𝑖𝑖𝛼𝛼0 + (𝛽𝛽1+𝛿𝛿𝑖𝑖𝛼𝛼1)𝑡𝑡 + (𝛽𝛽2+𝛿𝛿𝑖𝑖𝛼𝛼2)𝑡𝑡2

where tb (i=1) and utb (i=2) and δi=0 if i=1
1 otherwise. 

To see all the side results that you
can use write,
attributes(viability.glm3)
This may reveal stuff not
documented in the help page.



Logistic Regression: Example

 An important question here is if the predicted survival probabilities 
in the TB and UTB populations are significantly different.

 Use predictions rather than individual observations at each time 
interval since these are based on all the data.

 The R predict function can generate standard errors for the logit 
function but won’t generate tests between different predictions. 

 However, we can generate random samples of the regression 
parameters, make predictions for TB and UTB and save the 
differences.



Logistic Regression: Example
library(mvtnorm)

logit2.ftn<- function(t,a0,a1,a2){
y<- a0+a1*t+a2*t^2
exp(y)/(1+exp(y))

}

cov.b<- summary(viability.glm3)$cov.unscaled
mean.b<- coefficients(viability.glm3)
age.range<- c( 42, 48, 54, 60, 66, 72,78,84,90)
sim.num<-5000
conf.band<- sapply(1:sim.num, function(x) {
#generate random parameters and make sure they are all >0
b.x<- rmvnorm(1,mean= mean.b,sigma=cov.b)
tb.x<- c(b.x[1], b.x[2], b.x[4])
utb.x<- c(b.x[1]+ b.x[3], b.x[2]+ b.x[5], b.x[4]+ b.x[6])

logit2.ftn(age.range,tb.x[1], tb.x[2],tb.x[3])- logit2.ftn(age.range,utb.x[1],
utb.x[2],utb.x[3])

})



Logistic Regression: Example
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Multinomial Logistic Regression

 If there are now k>2 categories we can extend the logistic 
equation method in two ways.

 The first requires that you pick one category as the baseline and 
then estimate coefficients for the remaining k-1 categories. The 
complication is that all odds ratios are defined relative to the 
baseline category.

 The softmax coding treats all categories symmetrically and is used 
in other statistical learning methods.



Multinomial Logistic Regression, softmax coding

 Assume we have K categories, then the Pr(Y=k|X=x) is
𝑒𝑒 𝛽𝛽𝑘𝑘0+𝛽𝛽𝑘𝑘1𝑥𝑥1 +⋯+𝛽𝛽𝑘𝑘𝑘𝑘𝑥𝑥𝑘𝑘

∑𝑖𝑖=1𝐾𝐾 𝑒𝑒 𝛽𝛽𝑖𝑖0+𝛽𝛽𝑖𝑖1𝑥𝑥1 +⋯+𝛽𝛽𝑖𝑖𝑘𝑘𝑥𝑥𝑘𝑘

 Now the odds ratio between the kth and jth class is,

𝑙𝑙𝑙𝑙𝑙𝑙
𝑃𝑃𝑃𝑃 𝑌𝑌 = 𝑘𝑘|𝑋𝑋 = 𝑥𝑥
𝑃𝑃𝑃𝑃 𝑌𝑌 = 𝑗𝑗|𝑋𝑋 = 𝑥𝑥

= 𝛽𝛽𝑘𝑘0 − 𝛽𝛽𝑗𝑗0 + 𝛽𝛽𝑘𝑘1 − 𝛽𝛽𝑗𝑗1 𝑥𝑥1+. . + 𝛽𝛽𝑘𝑘𝑝𝑝 − 𝛽𝛽𝑗𝑗𝑝𝑝 𝑥𝑥𝑝𝑝

 In R use the nnet package, and the multinom function.



Linear Discriminant Analysis

 LDA will outperform logistic regression when, (i) classes are well 
separated and (ii) n is small and the distribution of the predictors is 
approximately normal.

 LDA can also handle multiple response classes
 Three ways to find LDA predictors, (i) Bayes classifiers, (ii) find a 

scaling that maximizes the mean differences between response 
classes, and (iii) use the Mahalonobis distance.



Bayes Theorem

 Suppose we have K response classes, K≥2. πk is the prior 
distribution of class k. May be uniform, or estimated from sample.

 Let fk(X) be the probability density or mass function of X or 
Pr(X=x|Y=k)

 From Bayes Theorem we have, Pr(Y=k|X=x)=𝑝𝑝𝑘𝑘 𝑥𝑥 = 𝜋𝜋𝑘𝑘𝑓𝑓𝑘𝑘(𝑥𝑥)
∑𝑖𝑖=1
𝐾𝐾 𝜋𝜋𝑖𝑖𝑓𝑓𝑖𝑖(𝑥𝑥)

 If we assume the predictors have a normal distribution then we can 
get some specific results, assuming all fk(X) have a common 
variance (σ2) and each has mean, µk.

 Assign observation to class-k if, 𝑥𝑥 𝜇𝜇𝑘𝑘
𝜎𝜎2
− 𝜇𝜇𝑘𝑘

2

2𝜎𝜎2
+ log(𝜋𝜋𝑘𝑘) is largest.



Maximize distance between distributions

 Suppose X1 ~ MVN(µ1,Σ) and X2 ~ MVN(µ2,Σ). 
 The sample means, �𝑋𝑋1 and �𝑋𝑋2 have sample variances, S/N1 and 

S/N2. We will do a linear transformation (e.g aX1) of X1 and X2 to 
separate their distributions.

 Find aT=(a1, …,ap) such that t2(a) is maximized, where

𝑡𝑡2 𝑎𝑎 =
𝑎𝑎𝑇𝑇 �𝑋𝑋1 − �𝑋𝑋2

𝑎𝑎𝑇𝑇𝑆𝑆𝑎𝑎 1
𝑁𝑁1

+ 1
𝑁𝑁2

2

 To do this maximization use Lagrangian multipliers with the 
solution that a= 𝑆𝑆−1 �𝑋𝑋1 − �𝑋𝑋2

 Then for a set of features X, classify according to whether aTX is 
closer 𝑎𝑎𝑇𝑇 �𝑋𝑋1 or 𝑎𝑎𝑇𝑇 �𝑋𝑋2.



Mahalonobis distance

 Another way to derive the linear discriminant function.
 Find the Mahalonobis distance between an unknown (X ) and the 

mean of every group and assign X to the group X is closest to, e.g.
find the min over all i,

𝐷𝐷𝑖𝑖2 = 𝑋𝑋 − �𝑋𝑋𝑖𝑖 𝑇𝑇𝑆𝑆−1 𝑋𝑋 − �𝑋𝑋𝑖𝑖



Linear Discriminant Analysis: example
Wild populations of
Drosophila subobscura
brought into the lab and
they adapt over 22
generations.

Four different phenotypes
are monitored and are
believed to be related to 
fitness.

Can these component
fitness measures be used
to distinguish flies at the
start of selection and 
flies at the end?

Generations



Linear Discriminant Analysis: example

generation      age        earlyfec peakfec rf          rm     location replicate subpop year
4          0.550       -100.050     -100.450    -10.500      -2.100    sintra 1        a      1998
4          0.550        -42.050     -20.450     -10.500      -2.100    sintra 1        a      1998
4          -0.450       -50.050     -23.450      1.500       3.900     sintra 1        a      1998
4          1.550        -86.050     -52.450      -4.500      -2.100    sintra 1        a      1998
4          -0.450       -69.050     -79.450     -10.500      9.900     sintra 1        a      1998
4          1.550        -77.050     -41.450     -10.500      -2.100    sintra 1        a      1998
4          0.550        -55.050     -46.450     -10.500      3.900     sintra 1        a      1998
4          1.550        -72.050     -54.450      1.500       -2.100    sintra 1        a      1998
4          0.550        -53.050     -36.450      -4.500      3.900     sintra 1        a      1998
4          0.550        -46.050     -46.450      1.500       33.900    sintra 1        a      1998
4          -0.450       -50.050     -83.450      7.500       3.900     sintra 1        a      1998
4          -0.450       30.950       -5.450      1.500       -2.100    sintra 1        a      1998
4          1.550        -51.050      -4.450     -16.500      -8.100    sintra 1        a      1998
4          -0.450       -25.050     -44.450      -4.500      -2.100    sintra 1        a      1998
4          0.550        -33.050     -18.450     -16.500      -8.100    sintra 1        a      1998
4          0.550        -58.050     -28.450      1.500       -2.100    sintra 1        a      1998
4          1.550        -86.050     -114.450    -16.500      -8.100    sintra 1        a      1998

Etc
Age = age at first reproduction; earlyfec= early fecundity; peakfec = peak fecundity; rf= female starvation
resistance.
All values are shown relative to a lab adapted control run at the same time.



Linear Discriminant Analysis: example
> port.lda <- lda(na.omit(port),port.name)
> port.lda
Call:
lda(na.omit(port), port.name)

Prior probabilities of groups:
b         f 

0.5352697 0.4647303 

Group means:
age  earlyfec peakfec rf

b 2.0833152 -73.04842 -51.57066 -0.1002842
f 0.3036518 -45.21231 -34.16832 -0.3851994

Coefficients of linear discriminants:
LD1

age      -0.4087049732
earlyfec 0.0214200071
peakfec -0.0088328690
rf       -0.0005101683

To assess the importance of each factor
the variable should be scaled first, e.g.
divide each observation by the standard
error of that variable , e.g. port$age<-
port$age/sd(port$age).

With no formula in lda, the first entry are
the features and the second vector are
the groupings or class membership
for each observation (b=begin, f=final).



Linear Discriminant Analysis: example

 The discriminant function has given 
an objective measure of how the 
combined phenotypes change from 
the start to the end of the period of 
adaptation. Perhaps this is a way of 
summarizing the increase in fitness.

 While there is no evolutionary theory 
that arrives at the lda weightings it is 
clear that natural selection weights 
fitness components differently.



LDA Error Analysis

 A confusion matrix shows the true vs. the predicted status of 
samples in an LDA analysis

 Assume the user is interested in predicting only one of the two 
states (default).

 % of true defaulters identified= 81/333=24% (sensitivity, power, 
1-type II error)

 % of true non-defaulters identified= 9644/9667=99.8% 
(specificity, 1-type I error)



LDA Error Analysis

 How to improve the prediction of defaulters?
 Lower your criteria!
 Standard is for two choices, Pr(default=yes|X=x)>0.5. Lower this 

cutoff to say 0.2. 
 Now the sensitivity has increased to 195/333= 41%
 But specificity has decreased to 9432/9667= 97.6%



ROC Curve

 ROC stands for receiver operating 
characteristics.

 This is a plot of the true positive rate 
(sensitivity) vs false positive rate (=#of 
incorrect predicted defaults/total non-
defaults)

 Ideally you would like the true positive 
rate to be very high at very low false 
positive rates. Thus, the best methods 
would have an area under the curve 
(AUC) close to 1.0. Just guessing should 
get an AUC of 0.5.



Statistical Nomenclature about errors



Quadratic Discriminant Analysis

 With this type of analysis we allow the variance-covariance matrix 
of each class to be different.

 This will reduce the bias of the LDA predictor but increase the 
variance due to the great increase in the number of parameters 
that must be estimated.

 The Bayesian classifier assuming normally distributed predictor 
variables yields, 𝛿𝛿𝑘𝑘 = −1

2
𝑥𝑥 − 𝜇𝜇𝑘𝑘 𝑇𝑇Σ𝑘𝑘−1 𝑥𝑥 − 𝜇𝜇𝑘𝑘 − 1

2
𝑙𝑙𝑙𝑙𝑙𝑙 Σ𝑘𝑘 + 𝑙𝑙𝑙𝑙𝑙𝑙𝜋𝜋𝑘𝑘



Quadratic Discriminant Analysis



Comparing Methods

 LDA and logistic regression produce linear decision boundaries but 
estimate model parameters differently. 

 If observations are truly normal then LDA may outperform logistic 
regression. However, if this the distribution is not normal logistic 
regression may be better.

 KNN is non-parametric so it should do well when the decision 
boundary is non-linear. But you can’t weight the importance of the 
predictor variables.

 QDA may be viewed as a compromise between LDA, logistic 
regression and KNN.



Linear Simulations (p=2)

Scenario 1: uncorrelated predictors from a normal distribution, common covariance
Scenario 2: Same as 1 except predictors have a correlation of -0.5
Scenario 3: Samples drawn from a t-distribution, now logistic regression does better
KNN-CV, cross-validation with the training set to help choose neighborhood size.



Non-linear Simulations (p=2)

Scenario 4: class 1 predictors normal distribution with correlation 0.5, second class predictors
normal distribution with a correlation of -0.5. Now QDA does best.
Scenario 5: Observation are from a normal distribution with uncorrelated predictors. However,
the response is generated from logistic equation with terms 𝑋𝑋12,𝑋𝑋22,𝑎𝑎𝑎𝑎𝑎𝑎 𝑋𝑋1 × 𝑋𝑋2. This generates
a quadratic decision boundary.
Scenario 6: Same as 5 except an even more complicated non-linear function.



Poisson Regression

 Suppose the response variable you want to predict is a non-
negative integer, and its variance increases with the mean value.

 The increasing variance violates the assumptions of linear 
regression but also violates the binomial/multinomial assumptions 
of logistic regression.

 These response variables may have a Poisson distribution where,

𝑃𝑃𝑃𝑃 𝑌𝑌 = 𝑘𝑘 =
𝑒𝑒−𝜆𝜆𝜆𝜆𝑘𝑘

𝑘𝑘!
𝑓𝑓𝑙𝑙𝑃𝑃 𝑘𝑘 = 0, 1, 2, …

 The mean and the variance of the Poisson distribution is λ.
 Example: bikeshare data in the textbook.



Poisson Regression

 Rather than model the response variables the mean, λ, is modeled 
eg. λ(X1, X2, …, Xp).

 The linear model is, 𝑙𝑙𝑙𝑙𝑙𝑙 λ(X1, X2, …, Xp) = 𝛽𝛽0 + 𝛽𝛽0𝑋𝑋1 + ⋯+ 𝛽𝛽𝑝𝑝𝑋𝑋𝑝𝑝which 
implies that, λ(X1, X2, …, Xp)=𝑒𝑒𝛽𝛽0+𝛽𝛽0𝑋𝑋1+⋯+𝛽𝛽𝑘𝑘𝑋𝑋𝑘𝑘

 These regression coefficients will be estimated using maximum 
likelihood as was done with logistic regression.

 The likelihood of the observations, (y1,x1), (y2,x2),..,(yn,xn) is

�
𝑖𝑖=1

𝑛𝑛
𝑒𝑒−𝜆𝜆(𝒙𝒙𝑖𝑖 )𝜆𝜆 𝒙𝒙𝑖𝑖 𝑦𝑦𝑖𝑖

𝑦𝑦𝑖𝑖!



Generalized Linear Models

 The R glm function has several options,
glm(dead.data2~ 
age*selection+age2*selection,data=viability.data3,

family=binomial)

 family has several options:
family=gaussian -> linear regression
family= binomial -> logistic regression
family=poisson -> Poisson regression
other options -> Gamma, inverse.gaussian, quasi, quasibinomial, 
quasipoisson





Comments on the Quasi-Binomial Distribution

 Binomial: g(x)= 𝑎𝑎
𝑥𝑥 𝑝𝑝𝑥𝑥(1 − 𝑝𝑝)𝑛𝑛−𝑥𝑥

Quasi-binomial: g(x)= 𝑎𝑎
𝑥𝑥 𝑝𝑝(𝑝𝑝 + 𝑥𝑥𝜑𝜑)𝑥𝑥−1(1 − 𝑝𝑝 − 𝑥𝑥𝜑𝜑)𝑛𝑛−𝑥𝑥

 The extra parameter 𝜑𝜑 can inflate (or deflate) the variance relative 
to the binomial distribution (𝜑𝜑 = 0).

 A population contaminated with individuals that show two (or
more) different binomial probabilities will have a variance greater 
than the binomial.

 Example: niche overlap measures for two species contaminated 
with genotypic variation.
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